Evolution discovers a smc (sensorimotor contingency) between motor action and the gyroscope sensor.
Download Code here: https://github.com/ctf20/DarwinianNeurodynamics/tree/master/MB12
This was unexpected for me, but makes sense in retrospect.
After 529 generations, with the fitness function being mutual information between a sensory stream and motor command stream, the following motor-sensor pairs were evolved, with maximum fitness 1.57... Note that 37 is the most common sensor to be predicted, and that is the GYROSCOPE.
This makes perfect sense when you think about it. Many motors influence the gyroscope, and units with the gyroscope are more robust to mutation of the motor because many motors will influence the gyroscope. The gyroscope is a very broad and general sensor.
To do:
1. The resolution of the discretization from continuous sm streams to bins must be increased (perhaps incrementally)
2. A mechanism needs to be in place to store high fitness solutions into a long term memory and punish reinvention of the same solution. This can be achieved by an explicit fitness cost to producing solutions SIMILAR to solutions in LTM.
Gen 529 | Num 0 | 1.570950594 | Sens in [[27 | 37] | Motor 5 | Sensor 37 |
529 | 1 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 2 | 1.570950594 | [[27 | 37] | 11 | 37 |
529 | 3 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 4 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 5 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 6 | 1.570950594 | [[27 | 37] | 12 | 37 |
529 | 7 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 8 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 9 | 1.570950594 | [[27 | 37] | 25 | 37 |
529 | 10 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 11 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 12 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 13 | 1.570950594 | [[27 | 37] | 11 | 37 |
529 | 14 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 15 | 1.570950594 | [[27 | 37] | 11 | 37 |
529 | 16 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 17 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 18 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 19 | 1.570950594 | [[27 | 37] | 11 | 37 |
529 | 20 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 21 | 1.570950594 | [[27 | 37] | 25 | 37 |
529 | 22 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 23 | 1.570950594 | [[27 | 37] | 14 | 37 |
529 | 24 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 25 | 1.570950594 | [[27 | 37] | 20 | 37 |
529 | 26 | 1.570950594 | [[27 | 37] | 5 | 37 |
529 | 27 | 1.570950594 | [[27 | 37] | 20 | 37 |
529 | 28 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 29 | 1.570950594 | [[27 | 37] | 11 | 37 |
529 | 30 | 1.570950594 | [[27 | 37] | 2 | 37 |
529 | 31 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 32 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 33 | 1.570950594 | [[27 | 37] | 5 | 37 |
529 | 34 | 1.570950594 | [[27 | 37] | 6 | 37 |
529 | 35 | 1.570950594 | [[27 | 37] | 25 | 37 |
529 | 36 | 1.570950594 | [[27 | 37] | 13 | 37 |
529 | 37 | 1.570950594 | [[27 | 37] | 23 | 37 |
529 | 38 | 1.570950594 | [[27 | 37] | 12 | 37 |
529 | 39 | 1.570950594 | [[27 | 37] | 25 | 37 |
529 | 40 | 1.019973094 | [[27 | 37] | 25 | 15 |
529 | 41 | 0.970950594 | [[27 | 37] | 25 | 15 |
529 | 42 | 0.970950594 | [[23 | 40] | 8 | 37 |
529 | 43 | 0.695461844 | [[36 | 28] | 13 | 37 |
529 | 44 | 0.695461844 | [[40 | 23] | 13 | 37 |
529 | 45 | 0.619973094 | [[4 | 39] | 11 | 37 |
529 | 46 | 0.419973094 | [[33 | 11] | 13 | 37 |
529 | 47 | 0.419973094 | [[0 | 19] | 11 | 37 |
529 | 48 | 0.419973094 | [[39 | 12] | 19 | 37 |
529 | 49 | 0 | [[27 | 37] | 2 | 30 |
530 | 0 | 1.570950594 | [[34 | 19] | 5 | 37 |
530 | 1 | 1.570950594 | [[27 | 37] | 19 | 37 |
530 | 2 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 3 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 4 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 5 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 6 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 7 | 1.570950594 | [[27 | 37] | 5 | 37 |
530 | 8 | 1.570950594 | [[27 | 37] | 10 | 37 |
530 | 9 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 10 | 1.570950594 | [[27 | 37] | 25 | 37 |
530 | 11 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 12 | 1.570950594 | [[27 | 37] | 4 | 37 |
530 | 13 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 14 | 1.570950594 | [[27 | 37] | 5 | 37 |
530 | 15 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 16 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 17 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 18 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 19 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 20 | 1.570950594 | [[27 | 37] | 5 | 37 |
530 | 21 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 22 | 1.570950594 | [[27 | 37] | 25 | 37 |
530 | 23 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 24 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 25 | 1.570950594 | [[27 | 37] | 25 | 37 |
530 | 26 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 27 | 1.570950594 | [[27 | 37] | 25 | 37 |
530 | 28 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 29 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 30 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 31 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 32 | 1.570950594 | [[27 | 37] | 9 | 37 |
530 | 33 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 34 | 1.570950594 | [[27 | 37] | 25 | 37 |
530 | 35 | 1.570950594 | [[27 | 37] | 13 | 37 |
530 | 36 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 37 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 38 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 39 | 1.570950594 | [[27 | 37] | 2 | 37 |
530 | 40 | 1.570950594 | [[27 | 37] | 11 | 37 |
530 | 41 | 1.570950594 | [[27 | 37] | 5 | 37 |
530 | 42 | 1.246439345 | [[27 | 37] | 20 | 14 |
530 | 43 | 0.895461844 | [[42 | 18] | 5 | 11 |
530 | 44 | 0.695461844 | [[36 | 28] | 13 | 37 |
530 | 45 | 0.495461844 | [[36 | 28] | 13 | 37 |
530 | 46 | 0.495461844 | [[4 | 14] | 0 | 37 |
530 | 47 | 0.095461844 | [[29 | 2] | 11 | 37 |
530 | 48 | 0 | [[29 | 38] | 13 | 37 |
530 | 49 | 0 | [[31 | 30] | 25 | 37 |
531 | 0 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 1 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 2 | 1.570950594 | [[27 | 37] | 10 | 37 |
531 | 3 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 4 | 1.570950594 | [[27 | 37] | 4 | 37 |
531 | 5 | 1.570950594 | [[27 | 37] | 8 | 37 |
531 | 6 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 7 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 8 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 9 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 10 | 1.570950594 | [[34 | 19] | 5 | 37 |
531 | 11 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 12 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 13 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 14 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 15 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 16 | 1.570950594 | [[27 | 37] | 9 | 37 |
531 | 17 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 18 | 1.570950594 | [[27 | 37] | 0 | 37 |
531 | 19 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 20 | 1.570950594 | [[27 | 37] | 19 | 37 |
531 | 21 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 22 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 23 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 24 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 25 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 26 | 1.570950594 | [[27 | 37] | 5 | 37 |
531 | 27 | 1.570950594 | [[27 | 37] | 16 | 37 |
531 | 28 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 29 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 30 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 31 | 1.570950594 | [[27 | 37] | 23 | 37 |
531 | 32 | 1.570950594 | [[27 | 37] | 13 | 37 |
531 | 33 | 1.570950594 | [[27 | 37] | 2 | 37 |
531 | 34 | 1.570950594 | [[27 | 37] | 4 | 37 |
531 | 35 | 1.570950594 | [[27 | 37] | 25 | 37 |
531 | 36 | 1.570950594 | [[27 | 37] | 25 | 14 |
531 | 37 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 38 | 1.570950594 | [[27 | 37] | 11 | 37 |
531 | 39 | 1.570950594 | [[34 | 19] | 5 | 37 |
531 | 40 | 0.809986547 | [[5 | 20] | 11 | 37 |
531 | 41 | 0.695461844 | [[5 | 0] | 2 | 37 |
531 | 42 | 0.695461844 | [[27 | 37] | 5 | 41 |
531 | 43 | 0.695461844 | [[27 | 37] | 13 | 41 |
531 | 44 | 0.695461844 | [[27 | 37] | 20 | 14 |
531 | 45 | 0.495461844 | [[36 | 28] | 13 | 37 |
531 | 46 | 0.321928095 | [[30 | 23] | 13 | 37 |
531 | 47 | 0 | [[34 | 19] | 5 | 35 |
531 | 48 | 0 | [[26 | 6] | 9 | 37 |
531 | 49 | 0 | [[27 | 37] | 25 | 33 |
Those zeros are looking real sexy. I believe NAO is learning about balance!
ReplyDeleteNice!
ReplyDeleteA short addition to this result. When I allow 20 bins of discretization and increase the period to 20 time samples for a particular kind of action, then I evolved the majority of units that 'predicted' 2 axes of the accelerometer sensors with motor actions from many different joint motors. Rather, this organisation robustly (i.e. robustly to mutation and environmental noise) maximised the mutual information between sensors and motors.
ReplyDeleteNext step for tomorrow, adding taboo search methods by storing already good solutions in LTM.
ReplyDelete